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Boundary Conditions for a Fourth Order 
Hyperbolic Difference Scheme 

By D. M. Sloan 

Abstract. Oliger [6] has used a stable time-averaged boundary condition with a fourth order 
leap-frog scheme for the numerical solution of hyperbolic partial differential equations. Gary 
[3] generalized the time-averaged boundary condition by including a scalar parameter. This 
paper examines the stability and accuracy of the more general boundary condition. The limit 
of the stability interval is found for the parameter, and it is shown that the parameter should 
be given a value close to this limit in order to minimize the boundary errors. Numerical 
experiments are described which support the theoretical predictions. 

1. Introduction. Finite difference schemes often require more boundary conditions 
than the differential equations which they approximate. The additional boundary 
conditions may be constructed using a mathematical or a physical approach and, in 
either case, care has to be taken to avoid the introduction of boundary approxima- 
tions which give rise to instabilities. Here we consider boundary approximations to 
be used for the numerical solution of hyperbolic partial differential equations. Of 
particular interest is the stability and accuracy of a class of boundary approxima- 
tions when this class is conjoined with an interior difference scheme which uses 
second order leap-frog differences in time and fourth order centered differences in 
space. 

An initial and boundary value difference scheme will be constructed as an 
approximation to the simple hyperbolic problem defined by 

(I. 1) ut =cux , c > 0 0< x <I t zO, 

(1.2) uU , t) U g(t), t > O, 

(1 .3) u(x, O) = q(x), O O s x < I, 

with the compatibility condition g(O) = q(l) satisfied. Suppose u is approximated by 
a grid function UA, and let U' denote the value of UA at the grid point x = x; = jAx, 

n nAt, where Ax = 1/J and J is a positive integer. The approximation to 
(1.1), with accuracy O(/At2 + AX4), may be written as 

(1.4) Un+ = un-I + 6 jU= 2,3, .. ,J-2, 

where X = cAt/Ax, and the boundary condition (1.2) becomes 

( 1 .5) UJ~~~~U+ = g( tn +I) . (1.5) Qf+ 
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2 D. M. SLOAN 

Additional boundary conditions are required for the evaluation of Uj"?1 U" ?1 and 

U,,'+ ! and Oliger [6] has shown that a stable scheme is obtained using the 
supplementary conditions 

(1.6) 14Ii- I U'- I + X [4U" + 3(U"+1 + U]%') -12U7 + 2U' ]j UYI J - 1 r- 6 - I~ J -~.-I-- 2 J--31 

(1.7) L - ==U" L( + [-il(U();' ' + uO'l) + 36UI" - 18U2" + 4U3"], 
6 

( 8.X) bU" ' U11' 4 6 [--4U'' - 3(U"' + U1'') + 12U2" - 2b3]. 

Tlnhe extra conditions are approximations to (1.1) which employ time averaging at 
--X it t and x1 in (1.6), (1.7) and (1.8), respectively. Each of these conditions has 
accuracy O( Ax3) in any grid refinement with At/Ax2 held constant, and the overall 
accuracy of the scheme during such a refinement is O(Ax4). 

Here we wish to consider a generalization of the boundary approximations 
(1.6)-- 1.). Gary [31 has pointed out that Eq. (1.6), for example, may be written as 

U' + ~(2LS" ? 3 6 + + I - U + U1 - 2 Ul + UJ2 J 
--j ~ -| J- - 1J 

2J3 2 'J- - 
anid he has indicated that the final term in this equation may be regarded as a 
boundary stabilizing term. Gary generalized the concept of adding the boundary 
stabilizing terml by introducing a real parameter ,I to create the modified stabilizing 
termi 

A2 
( UJ n 2 UJ 1 + Uj' 

-- 1) 2 (u?1-2L/I 

The value -- 0 yields the obvious O(At2 + Ax3) approximation to (1.1) at x 

xj I and the value -- 1 yields Oliger's [6] stable approximation. The introduction 
of ,u to (1.6), (1.7) and (1.8) in this manner produces the modified boundary 
approximations 

(1.9) U+ X (2 -n + 3Ufn - 6Un 2 + Un-3 

+ AO ( UjI 
- 2UU1,n + UJ_l) 

(110)) U0"'I (C{I + 3 n(-l1U,' + 18U1n - 
9U2 + 2U,)) 

2 l i ^-4 i 2Jn + Uon-), 

(1.11) Un+1h= Un-I + 
X 

(-2UOn - 3Un + 6U2n - U3n) 

_ Ay (Uln+ -2Ufn + Un1). 

Gary [3] conducted numerical experiments using (1.4), (1.5) and the set of boundary 
conditions (1.9)-( 1.11). He concluded, inter alia, that with A = 0.2 the difference 
scheme is stable when ,u = 0.5 or it = 20, and it is unstable when j. = 0.4 or , = 25. 

His results suggest that the situation here is akin to that which is created by the 
analogous generalization of the boundary approximation for the second order 
leap-frog method. Sloan [7] has analyzed the latter problem and he has shown that if 
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X satisfies the necessary condition 0 < X < 1, there is an interval (0 L(AX), /(X)) 
with 0 < AL(X) < 1 < /( X), such that the second order difference scheme is stable 
if and only if CE (M'L' MlU). The analysis in [7] also shows that, in terms of accuracy, 
there is an optimum value of 1 within the interval (IAL, Ml). Here the aim is to 
produce an analysis of this type for the initial and boundary value difference scheme 
defined by (1.4), (1.5) and (1.9)-(1.1 1). 

For the fourth order leap-frog method under consideration here the pure Cauchy 
problem is stable if and only if 0 < X < Xm, where XAm = 6/(9 + 241&)I/2 0.7287. 
It is readily shown that the accuracy of the complete difference scheme improves as 

1 approaches zero, and if stability holds for CE (pjL, Ml) with ) L > 0, then the 
optimum value of 1 is a value close to ML. The objective of this paper is to prove that 
if X C (0, XAm) there is a value /'L(/X) > 0 such that the difference scheme defined by 
(1.4), (1.5) and (1.9)-(1.1 1) is unstable if CE [0, /'L(X)I and stable for 1 in some 
region with open lower boundary /'L(X). Values of JL(X) will be obtained for a 
discrete set of X values in (0, XJm). Accuracy diminishes as 1 increases from /1L( X), So 

no attempt is made to obtain the upper boundary of the stability interval. For a 
large part of the interval 0 < X < Xm but not the complete interval-the value of 

/1L( X) is less than unity. When /1L( X) < 1 a value of 1 may be selected which will 

produce more accurate boundary approximations than those analyzed by Oliger [6]. 

2. Description of the Problem. The local truncation error of each of the boundary 
approximations (1.9)-(1.1 1) is readily shown to have the form O(XMLXt + A t2 + Ax3I) 
as At 0 and Ax - 0. This becomes O(AX3) in any grid refinement in which 
At/iXx2 is held constant. However, for a prescribed AXx and an acceptable value of 
X C (0, Xm) the local truncation errors will be minimized if I 1 is minimized subject 
to stability restrictions. Numerical experiments indicate that for X C (0, Xm) the 
scheme is unstable if y < ?L(X), where AL(X) > 0, and also that the accuracy 
deteriorates as ju increases from gAL( X). The investigation is therefore reduced to a 
stability analysis and, in particular, to the evaluation of the lower stability limit, 

L(A). 

The stability theory of Gustafsson, Kreiss and Sundstrom [4] will be used to 
analyze the stability of the difference problem. The stability of the two-boundary 
problem is equivalent to the stability of the outflow and inflow quarter-plane 
problems which are defined, respectively, by removing the right- and left-hand 
boundaries and extending the domain to ? xo, as is appropriate. The inflow problem 
is simplified if we negate the wave speed c and replace the left quarter-plane problem 
by an equivalent right quarter-plane problem. The inflow problem is therefore 
defined by 

(2.1) y+ = y'-~( , A 6 2-8Ujl1?8y1- U+ +2), j 2, 

(2.2) U g(tn+1), 

(2.3) u1+' = - o-(-2u& -3U1n + 6U2 -U3;) 

+ -A (Un+ -2U1n + un-), 

withXA E (0, XAm2) 
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To examine the stability of the finite difference schemes we seek a solution of (1.4) 
or (2.1) in the form Uj' = azKic, where a, z and K are complex numbers. The 
condition for the existence of a nontrivial solution of (1.4) or (2.1) is that z and K 

should satisfy the characteristic equations 

(2.4a, b) K4- 8K3 + 6(z2 - 
1)K2 + -I = O. 

Xz K+K1O 

This pair of equations has been examined by Oliger [6] in his stability analysis of the 
boundary conditions corresponding to those considered here under the constraint 
A = 1. For convenience we quote two results concerning the roots of (2.4) which 
have been derived by Oliger. 

LEMMA 2.1. Let z be a complex number. For I z 1 1, the roots of (2.4a, b) split into 
two groups 

M1 =[KI(Z; +X), K2(Z; +X)] and M2 [K3(Z; +X), K4(Z; +X)] 

such that 

(i) I K1(Z; + < 1, I K2(Z; ?X) 1 1, 
(ii) i K3(Z; IA) | 1, I K4(Z; ?X) > 1, 

where Ki, i = 1, 2, 3, 4 are continuous functions of z. Both of the inequalities (i) and (ii) 
can be taken strictly if and only if I z I > 1 or, for z = ei' with I sin 0 1 > X/X and 
Xm = 6/(9 + 24X6-)1/2. Furthermore, at least one of the inequalities in (i) and in (ii) 
can always be taken strictly. 

LEMMA 2.2. The elements of M1 are distinct for I z j I 1, except for the single value zo 
which is the root of Z2-+ (X/3X-9 + 246)'/2Z-1 - 0, such that I Zo I > 1. 

This completes the lemmas. 
For the outflow problem zo has the value 

6 A(-9 + 24A) / + {A2(-9 + 24A6) + 36 1/2 

and this is negated to give zo for the inflow problem. In either case it is readily 
shown that the double root within the unit circle in the K-plane is given as a root of 
the cubic 

K3 - 6K2 - (-9 + 24y6 ) K + 2 = 0, 

and the value, correct to 4 decimal places, is Ko = 0.2374. 
We first consider the stability of the outflow problem. For I z I > 1, z 7 zo, the 

general solution of (1.4) which decays asj increases is ji' = z'(c1Kl + c2KJ), where 
K3 = K,(z; A) and K2 = K2(z; X) are the roots of (2.4a) in the set M, and cl and c2 
are arbitrary complex constants. If this solution is substituted in the boundary 
approximations (1.10) and (1.11), a homogeneous linear system in cl and c2 results 
and the determinant of the coefficient matrix of this system is 

D(Z; A, ) = QJ(z, KI; X, ,L)Q2(z, K2; X, JA) - QI(Z, K2; X, /L)Q2(Z, Ke; X, ,u), 

where 

(K; ) - ( 1) + 1)2 + Z(11 - 18K + 9K 2K3), 

Q0(z KA ,pu) = 3 K(Z2- 1) +3UK(Z- 1)+ z(2 + 3K- 6K + K) 
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and Ki K1(z; X), K2 = K2(z; X). D(z; X, y) is defined for all I z I- 1. 
If z =z0, thenK1 = K2 = Ko, and the general solution of (1.4) which decays as j 

increases is Lj' zgKJ(Cj +jc2). As before, substitution in (1.10) and (1.11) yields a 
homogeneous linear system in cl and c2 and the determinant of the coefficient 
matrix is 

D(X, M) = Q1(Z0, Ko; X, I)Q4(zO, Ko; X, y) - Q3(zO, KO)Q2(ZO, Ko; X, y), 
where 

Q3(z, K) -6ZK(3 - 3K + K 2) 

and 

Q4Z,K; X, ) ) =3K(Z2_ 1) + 3 -JK(Z - 1)2 + 3ZK(1 - 4K + K2). 

From the theory of Gustafsson et al. [4] it follows that for 0 < X < Xm and a 
prescribed real value of y the outflow problem is stable if and only if 

(2.5) D(z; A, Mi) = 0 

has no solution z in z z 1, and, in addition, 

(2.6) D(X, M) =# 0. 

Owing to the complexity of (2.5) this equation has to be analyzed numerically, and 
the treatment involves the simultaneous solution of (2.4a) and (2.5) for K1(z; X), 
K2(Z; X) and z. Values of the triple (K,, K2, z) are obtained by solving a set of three 
multivariate polynomial equations. Equation (2.4a) enables us to write two of the 
polynomial equations as 

(2.7a) Xz(K 4 - 8K + 8K - 1) + 6(9z - 1 )K= 0, 

(2.7b) XZ(K4 - 8K3 + 8K2 - 1) + 6(z2 - 1)K2 = 0. 

To complete the system we write Eq. (2.5) as a polynomial in z with coefficients 
which depend on K1 and K2. Each coefficient in the polynomial has a factor K2 - K, 
and if this nonzero factor is removed, (2.5) takes the form 

(2.7c) abz4 + Wz3 + Oz2 + (z + Z 0, 

where W= aA +bB, =ad + bc + C, =cA + dB, Z =cd with a, c 11/2 
?3/X; b, d = 3y/2 ? 3/A and 

A = K1 + K K2 + K2 - 6(K1 + K2) + 3(1 - 

B = K1K2(2K1 + 2K2 - 9) + 11(1 - /4 

C - -3K 2K2 - 6(2 + 
tL)KjK2(Kj 

+ K2) + (15 - 11)(K2 + K1K2 + K2) 

+27(3 + M)KIK2 + (66.t - 84)(K1 + K2) + 33(1 - .tj) + 36. 

If (K1, K2, z) is a solution triple of (2.7), then this z is an eigenvalue of the 
difference scheme if I z I > 1 whilst the associated K1 and K2 are strictly inside the unit 
circle. The point z0 is an eigenvalue if condition (2.6) fails, that is, if D(X, t) = 0. 
The value z in a solution triple is a generalized eigenvalue if Iz 1 and the 
associated K1 and K2 are in the set M1 of Lemma 2.1, with I K1 I = 1 or I K2 1 = 1. In 
this case, if z is slightly perturbed so that j z I > 1, the associated K1 and K2 given by 
(2.7a, b) must be strictly inside the unit circle. The outflow problem is stable if there 
is no eigenvalue or generalized eigenvalue in z 1. 
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The formulation of the inflow stability problem is effected in an analogous 
manner. In this case, for 0 <A < Am and a prescribed real value of A the inflow 
problem is stable if and only if 

(2.8) E(z; X, M 

has no solution z in I z j>> 1, and, in addition, 
(2.9) E(X, ) , 

where 

E(z; A, /A) = Q2(Z, K2; -A, M)-Q2(Z, K1; -A, M), 

E(AI, ji) = Q4(ZO, Ko; -, 1). 

Here KI = KI(Z; -4) and K2 K K2(Z; -4) are the roots of (2.4b) in the set M,, and zo 
and Ko are the real positive numbers described by Lemma 2.2. Equation (2.8) has to 
be solved numerically and the analysis follows that described for (2.5). KI, K2 and z 
are determined by the multivariate system of polynomial equations 

(2.1Oa) -AZ(KX - 8KI + 8KI - 1) + 6(9 - 1)KI 0, 

(2.1Gb) -AZ(K4 - 8K2 + 8K2 - 1) + 6(Z2 - I)K2 0, 

(2.10c) dz + [K2 + KIK2 + K2 - 6(KI +2) + 3(1 - I)]z + b = O, 

where d and b are defined in (2.7c). The inflow problem is stable if (2.9) holds and if 
the numerical solution of (2.10) shows that the difference scheme has no eigenvalues 
or generalized eigenvalues in I z 1f2 1. 

To facilitate the test for generalized eigenvalues which could arise in the numerical 
solution of (2.7) and (2.10) a few observations should be made concerning the roots 
of (2.4) which belong to the set M,. Note initially that K(Z; A) is a root of (2.4a) if 
and only if K(-Z; A) is a root of (2.4b), so observations need only be made on the 
outflow roots. Furthermore, K(Z; A) =K(Z; A), and it should therefore suffice to 
comment on the roots of (2.4a) for z in the region 

R {z: z E C,Iz I> 1, Im(z) > 0) 

of the complex plane C. It follows from Lemma 2.1 that for z E R generalized 
eigenvalues can only occur for z = e'O, with 0 < 0 < 0 or T-000 < 0 < T, where 
00 =sin(A/Am). If 0 is restricted in this way, then K,(e'6; A) = el' and K2(e'0; A) is 
strictly inside the unit circle. The symbol K, is used to denote the root of modulus 
unity for z on either of the two circular arcs. The following lemma contains some 
observations on the root K1(e'0; A) = e'+ for 0 E [0, 00] or 0 C [v - 0, 7r]. 

LEMMA 2.3. (i) K1(1; A) =-1; 
(ii) K1(-l; A) = + 1; 

(iii) K3(ei(7T-9); A) = K,(e'6; A) for 0 E [0, 00I or 0 E [,r - 00, Ti]. Here K3 is a root 
from the outer set M2; 

(iv) 0 E [0, 00] EE [p0,' n] and 0 E [r-00, r] X E [0, p0], where 0= 
cos-'(l - 3/2). In each of these regions the derivative of 4 with respect to 0 is 
strictly negative. 

Proof. The existence of the roots of (2.4a) at K ? +-I when z 1 is obvious. 
The identification of the inner root K1 is achieved by considering a perturbation of z 
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from ? I along the real axis. Result (iii) follows from the invariance of the equation 

K4-8K3+ 12isin0 2 + 82 -1=0 

when 0 is replaced by X - 0. Result (iv) is obtained in a straightforward manner 
from the analysis of roots of this quartic which have the form K = ei', for 
1 (6 sin 0)/X 1': (9 + 24F6 )l/2. Note that K1 and K3 coincide when 0 = 00 or 0 = - 

10. 

If a triple (K1, K2, z) arises in the numerical solution of (2.7) or (2.10) with I z I = 1 
and I Ki l= 1 for i = 1 or 2, then Lemma 2.3 will enable us to decide if this root 
corresponds to a generalized eigenvalue. 

3. Stability Analysis. The conditions (2.6) and (2.9) were checked numerically by 
evaluating D(X, p) and E(X, ,t) on the grid of values X = 0.05(0.05)0.70, u = 

0(0.2)1.0 within (0, Xm) X [0, 1]. Values of D(X, Ia) and E(X, i) for X 0.05 are 
shown in Table 3. 1. 

TABLE 3.1 

D(0.05, ju) and E(0.05, u) in Eqs. (2.6) and (2.9), for ,= 0(0.2)1.0. 

1-i 0 0.2 0.4 0.6 0.8 1.0 

D(X, tt) 2.40 10.6 21.7 35.5 52.2 71.7 
E(X, I) -1.6960 -1.6957 -1.6955 -1.6952 -1.6949 -1.6947 

As X increases D(X, u) increases and E(X, ,u) decreases for each value of i, and 
we therefore conclude that the inequalities (2.6) and (2.9) are satisfied. 

The systems of polynomial equations (2.7) and (2.10) were solved numerically 
using a homotopy continuation algorithm. Each of these equations may be regarded 
as a system of six real polynomial equations in six real variables, and we therefore 
consider a method for the numerical solution of an equation of the form 

(3.1) F(X)=0 
where F: v -+ R is a nonlinear mapping, R is the set of real numbers and v is a 
positive integer. In a continuation method F(X) is partitioned in the form F(X) 
4(X) + I( X), and the problem is embedded in the family of problems 

(3.2) H(Y) H(X, T) 4(X) + T4(X) = 0, 
where T E R, so that H: R"' -* R. The vectors X which satisfy (3.1) are solutions 
of H( X, 1) = 0, and it is assumed that F has been partitioned such that all solutions 
of H( X, 0) 0 are readily obtained. Various continuation methods have been 
proposed and the reader is referred to the text by Wacker [8] and the review paper 
by Allgower and Georg [1]. 

The problem under consideration here was solved using an adaptation of the 
algorithms described by Garcia and Li [2] and Li and Yorke [5]. Suppose 
,q: R -R*+l is a smooth curve such that 

(i) 11i7(s)1I = 1 for s E R (s is arc length), where 7i(*) = dq( - )/ds and 11 * 11 is the 
Euclidean norm; 

(ii) H(q(s)) = OVs E R; 



8 D. M. SLOAN 

(iii) H'(?q(s)) has rank v for s E R, where H' is the Frechet derivative of H: all 
points on the curve are regular. 

Here the final component of the vector n(s) is the real parameter T(s), and the 
aim is to follow the homotopy path from the known point at which T = 0 to the 
required point at which T = 1. The path in RW"' is obtained using a predictor-cor- 
rector method to solve the initial value problem 

(3.3a) H'('(S))4 (s) = 0, 

(3.3b) I)(s)II = 1, 

from an initial value q(0) = Y0, where Yo = (X0, 0) and X0 is one of the known 
solutions of 4( X) = 0. A Runge-Kutta predictor finds an approximation by moving 
a distance As along a suitable unit vector B from a known point on the homotopy 
path, and a Newton corrector is then used to solve the integrated system (3.2). The 
iteration is constructed so that successive iterates lie on a hyperplane perpendicular 
to the unit vector B. 

In the adaptation of the above algorithm which was used to solve (2.7) and (2.10) 
the operator H' is the 3 X 4 complex matrix of partial derivatives of H with respect 
to K1, K2, z and T. (3.3a) is solved to give ic(s), K2(S), z(s) and T(s) as 3 X 3 
complex determinants, and each component of this solution is then multiplied by 
the complex conjugate of the solution for T(s) to give a quadruple 
(ikl(s), 'A2(S), 2(s), T(s)) in which T(s) is real and strictly positive Vs E R. The 
algorithm is modified to yield q: R -- C3 X R, where the components of q(s) are 
KI(S), 1(2(S), z(s) and T(s). 

The partitioning adopted for the solution of the outflow stability equations (2.7) 
was 

(3.4a) cS - 1 + T[-KI + Xz(I4- 8K3 + 8K, - 1) + 6(Z2 - 1)C2 + 1] = 0, 

(3.4b) 2 -1I + T[-K, + AZ(K 4 - 8PC + 81C2 -1) + 6( Z2 - I)K2 + 1] = O, 

(3.4c) Z6 + 1 + T[_Z6 + z4 + (9fz3 + OZ2 + zZ + Z)/(ab)-1] 0. 

When T = 0 the degrees of the component equations in (3.4) are 5, 5 and 6 and these 
match the degrees of the component equations in the multivariate system (2.7). The 
solutions of (3.4) at T = 0 give rise to 150 initial values q(0) = (Kl(0), 12(0), Z(0), 0) 

for the system (3.3). The use of symmetry in ic, and K2 and the elimination of 
complex conjugates enables us to reduce this to a set of 30 initial values. In (3.4) we 
selected a value of X in (0, Xm), set ,u = 0.1 and applied the continuation algorithm 
using each of the 30 initial vectors. This produced 8 solution triples for (2.7), and in 
this solution set the only unstable triple was that obtained from the branch with 
initial value (e2,i/5, e-47i/5, e5''i16, 0). Solutions were then obtained using this;initial 
value with IL = 0.1, 0.2,.. ., and the solution procedure was terminated when I z I in 
the solution triple fell below the value unity. Table 3.2 shows the unstable triple for 
X = 0.5 and , = 0.1(0.1)0.6. 
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TABLE 3.2 

Unstable triple for outflow problem with A = 0.5. 

11 Re(Kl ) IM(K,) Re(K2) IM(K2) Re(z) Im(z) _ z 

0.1 0.4146 0.6277 0.1232 -0.02476 -1.0094 0.5592 1.1539 
0.2 0.2290 0.6999 0.1189 -0.02751 -0.9160 0.6858 1.1443 
0.3 0.09252 0.7216 0.1162 -0.02825 -0.8332 0.7430 1.1164 
0.4 -0.01937 0.7179 0.1144 -0.02824 -0.7626 0.7619 1.0780 
0.5 -0.1158 0.6963 0.1131 -0.02780 -0.7029 0.7539 1.0307 
0.6 -0.2009 0.6584 0.1120 -0.02700 -0.6523 0.7230 0.9738 

A bisection technique was used to locate the value ,u = ILL at which j z = 1, and 
stability was checked for ,u slightly larger than iL by applying the continuation 
algorithm on all 30 initial quadruples for the system (3.3). Table 3.2 indicates that as 
,u passes through yL the point z crosses the unit circle at a point elO with 
sin 0> sin 00. Table 3.3 shows L correct to two significant figures for a set of A 
values in (0, Am). 

TABLE 3.3 
Stability limit ILL for the outflow problem. 

A 0.1 0.2 0.3 0.4 0.5 0.6 0.65 0.675 0.68 

I-EL 0.47 0.48 0.49 0.52 0.56 0.64 0.73 0.88 UNS 

The entry UNS under A = 0.68 indicates that ML > 1 and that the outflow 
problem is therefore unstable when ,u = 1. This contradicts Oliger's [6] conclusion 
that the difference problem which he examined is stable for all X E (0, Am). 

An analysis of system (2.10) by the continuation method indicated that the inflow 
problem is stable for all ,t E [0, 1] and A E (0, Am). We therefore conclude that 
Table 3.3 gives the lower limit on ,l for stability of the initial and boundary value 
difference problem defined by (1.4), (1.5) and (1.9)-(1 .11). The results in Table 3.3 
agree with the computational results of Gary [3]. With A = 0.4 Gary found the 
problem to be stable at L = 0.6 and unstable at u = 0.5 and with A = 0.2 he found 
stability at u = 0.5 and instability at ,u = 0.4. 

4. Numerical Results. To support the analysis in the preceding sections the 
problem defined by Eqs. (1.1)-(1.3) was solved numerically using the difference 
scheme (1.4), (1.5) and (1.9)-(1.11), and the results were compared with the theory. 
The boundary functions g and q were initially defined by g(t) = sin 4,(1 + t), 
q(x) = sin 4Tx, and the wave speed c was set to unity. In Table 4.1, where results 
are given for J 20, the solution growth is conveniently illustrated by means of the 
norm 

J 

IIU(tn)lI2 = Ax j 
.-n 
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where a1 = 0.5 for] =0, J and aj = 1 otherwise. This is a discrete approximation to 
the quantity 

2(X,t) dx, u 

which has the constant value 0.5 for the solution u(x, t) = sin 47T(x + t). Results are 
given for values of n up to 2000, and if a solution is growing the entries in Table 4.1 
are terminated at a value of n where the instability has become obvious. An entry in 
brackets such as (+ 3) represents a decimal exponent. 

TABLE 4.1(a) 

I 1U(t")12 X 103 for exact solution u(x, t) = sin47T(x + t) withJ - 20, X 0.4. 

I n: 200 400 600 800 1000 1200 1400 1600 1(0)0 2000 

0.48 484 504 148(+ 2) 545(+ 4) 201(+ 7) 
0.50 484 482 485 496 624 262( + 1) 253( + 2) 207( + 3) 205( + 4) 421( + 5) 
0.52 484 482 484 485 484 489 488 482 483 466 
0.54 483 482 483 484 484 485 485 483 483 481 

TABLE 4.1(b) 

U(t)II2 X l03 for exact solution u(x, t) -sin4T(x + t) withJ 20, X 0.6. 2 ~ f. 

n:200 400 600 800 1(X)0 1200 1400 1600 1800 2000 

0.60 592 809(4+4) 213(+9) 
0.62 463 602 195(4+2) 251(4+4) 323(4+6) 418(+X8) 
0.64 460 460 460 460 460 460 460 460 460 460 
0.66 458 459 459 459 459 459 459 459 459 459 

TABLE 4.1 (c) 

IIU(tn)lf2for exact solution u(x, t) = sin4-(x + t) with J = 20, A 0.7, y -1. 

n: 200 400 600 
146(+ 12) 416(+430) 549(+48) 

L 

Tables 4.1 (a, b) show clearly the change from instability to stability as / increases 
through the value I1L and Table 4.1(c) shows the aforementioned instability at 
A 0.7 E (0, Am) when , = 1. Table 4.1(b) indicates that the deviation of IlU(t )112 
from 0.5 increases as ,u increases from I L. To show the variation of accuracy with I 
in terms of the maximum norm 

e(tn) = max| J)j- U(Xj, tn) | 

we have given results in Table 4.2 for the problem with exact solution u(x, t) = x + 
t + exp(-x - t). This choice should prevent misinterpretation due to error oscilla- 
tion. 
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TABLE 4.2 

e(t,,) for exact solution u(x, t) = x + t + exp(-x - t) with J = 20, X 0.25. 

I-L n: 80 160 240 320 

0.5 283(-7) 980(-8) 480(-8) 274(-8) 
0.6 318(-7) 121(-7) 512(-8) 255(-8) 
0.7 359(-7) 141(-7) 555(-8) 285(-8) 
0.8 399(-7) 161(-7) 596(-8) 323(-8) 
0.9 440(-7) 182(-7) 637(-8) 387(-8) 
1.0 482(-7) 203(-7) 693(-8) 471(-8) 

Table 4.2 shows clearly that yt should be chosen close to the stability limit tiL. 

The study has shown how a simple modification may be used to improve the 
time-averaged boundary conditions which were proposed by Oliger [6]. It is hoped 
that the work described here will prove useful in the construction of boundary 
conditions for more general hyperbolic systems. Gary [3] has pointed out that the 
addition of stabilizing terms to boundary approximations is readily accomplished in 
the case of nonlinear situations. Oliger [6] has used his time-averaging technique for 
linear hyperbolic systems in one and two space dimensions. 
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